
Vibe Coding a Car Racing Simulator (Failed)

Suzanna Sia
Nov 2024 

The Original Presentation is here: 
https://suzyahyah.github.io/assets/LimitationsOfSourceCodeAgents_SSIA.pdf
 

https://suzyahyah.github.io/assets/LimitationsOfSourceCodeAgents_SSIA.pdf


Troubleshooting and Code Generation workflow without LLMs

Software 
Engineer

Program Design 
Principles and 
objectives

Read and Understand 
Error Message

Understanding of System 
Interactions, Databases, Data 
Flow, API, Routing, Network

Document
ation

Code

Isolates 
Error in 
CodeNo

Yes

Formulate Plan 
for Code 
Improvement

Write Tests for 
Desired Behavior 
(Ideal)

Passes 
Tests

Code Generation 
for new functions, 
or code Repair

No

Debugging

End

Yes

Write new Logs to 
Inspect Program 
States and Variables

Isolate to 
functional blocks or 
logic in the code

Understand 
Source Code 
Logic

(Activate or Create 
Temporary 
debugging logs)

(Introspection, updated April 2025)

START

ERROR 
OCCURS IN 
CODE

Background 
Technical 
Knowledge

Programming



Troubleshooting and Code Generation workflow with LLMs 

Program Design 
Principles and 
objectives

Read and Understand 
Error Message

Understanding of System 
Interactions, Databases, Data 
Flow, API, Routing, Network

Document
ation

Code

Isolates 
Error in 
CodeNo

Yes

Formulate Plan 
for Code 
Improvement

Write Tests for 
Desired Behavior 
(Ideal)

Passes 
Tests

Code Generation 
for new functions, 
or code Repair

No

Debugging

End

Yes

Write new Logs to 
Inspect Program 
States and Variables

Isolate to 
functional blocks or 
logic in the code

Understand 
Source Code 
Logic

(Activate or Create 
Temporary 
debugging logs)

START

ERROR 
OCCURS IN 
CODE

Background 
Technical 
Knowledge

Programming

Code-LLM

SourceCode RAG

https://suzyahyah.github.io/code/2024/07/07/
Chunking-code-for-RAG.html



Summary

1. Steering LLMs towards Code Generation depends on the Programmer providing the relevant context to 
the Model, for understanding the Program's Design Principles, System Understanding and Domain 
Understanding.

However if we can provide ALL context to the LLM, then we should be able to replace 
programmers?

No, because debugging and generating new code in physical control systems is extremely 
difficult. It’s not fix patterns that you can rehash like in constructing certain types of 
games or UI. 



The Car is going off-track 
and not making the turn 
early enough

Gen Z 

Chat-GPT 

Programmer

Start

Top-down Image of 
the Car-racing Track

Chat GPT Programmer Workflow

LLM Formulate 
Plan for Code 
Improvement

Passes 
Tests

No

End

Tests (Visual or 
generated) for 
Desired Behavior

LLM Code Generation/ 
Repair Implementing Plan

Yes

Human Provided 
Goal



Formulating Plan for Code Improvement 

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Step 0: (Human provides Goal)

 “Generate the high level logic for a program which will navigate a car on a track. 

The track is surrounded by grass and there are no other obstacles.

 

The only goal is to stay on the track and reach the destination. 

There are four possible actions, steer left, steer right, go forward, brake. 

The only thing the program can observe is the pixel image of a top-down view of where the 

car is. Which might or might not be on the track. “

Yes

Human Provided 
Goal



Summary

1. Steering LLMs towards Code Generation depends on the Programmer providing the relevant 
context to the Model, for understanding the Program's Design Principles, System Understanding 
and Domain Understanding.

2. Debugging and generating new code in physical control systems is extremely difficult. It’s not fix 
patterns that you can rehash like in constructing certain types of games or UI. 

3. "Formulating Plan for Code Improvement" can generally works well at a high (and not very useful level).



Formulating Plan for Code Improvement 

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Step 1: Agent Formulate Plan for Code

Main Control Loop

• While the car has not reached the destination:

1. Determine Position Relative to Track

• Assess the car's location:

• In Track: If the car is on the track based on pixel analysis.

• Off Track: If the car is off the track (i.e., on the grass).

2. Decision Making

• Based on the car's relative position:

• If On Track:

• Check for upcoming turns:

• If a turn is detected, decide whether to:

• Brake: If speed needs to be reduced.

• Steer Left/Right: Adjust the steering to follow the track.

• If no turns are imminent:

• Action: Go forward.

• If Off Track:

• Determine the direction to steer based on pixel analysis:

• If the car is off to the left, steer right to realign.

• If the car is off to the right, steer left to realign.

3. Execute Action

• Perform the chosen action (steer left, steer right, go forward, brake).

• Update the car's state (position and orientation) based on the action.

Yes



Formulating Plan for Code Improvement 

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Step 2: Agent Generates Code for the Plan
Yes

Oops



Formulating Plan for Code Improvement 

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Step 2: Agent Generates Code for the Plan
Yes

Wrong Implementation 
of Logic

Wrong High-level Plan

Wrong 
hyperparameters

Wrong assumptions 
over available inputs

Potential Errors

Oops



Step 2: Agent Generates Code for the Plan: Code Logic Errors

Code Logic 
Errors

Wrong 
Implementation 

of Logic

Wrong High-level Plan
Wrong 

hyperparameters

Wrong 
assumptions over 
available inputs

Is this line correctly written?
How can the model verify this line is as intended?



Step 2: Agent Generates Code for the Plan: Code Logic Errors

Code Logic 
Errors

Wrong 
Implementation 

of Logic

Wrong High-level Plan
Wrong 

hyperparameters

Wrong 
assumptions over 
available inputs

Is this line correctly written?
How can the model verify this line is as intended?



Step 2: Agent Generates Code for the Plan: Code Logic Errors

Code Logic 
Errors

Wrong 
Implementation 

of Logic

Wrong High-level Plan
Wrong 

hyperparameters

Wrong 
assumptions over 
available inputs

Is this line correctly written?
How can the model verify this line is as intended?



Step 2: Agent Generates Code for the Plan: Code Logic Errors

Code Logic 
Errors

Wrong 
Implementation 

of Logic

Wrong High-level Plan
Wrong 

hyperparameters

Wrong 
assumptions over 
available inputs

Is this line correctly written?
How can the model verify this line is as intended?



Step 2: Agent Generates Code for the Plan: Code Logic Errors

Code Logic 
Errors

Wrong 
Implementation 

of Logic

Wrong High-level Plan
Wrong 

hyperparameters

Wrong 
assumptions over 
available inputs

Is this line correctly written?
How can the model verify this line is as intended?



Step 2: Agent Generates Code for the Plan: Code Logic Errors

“Track Mask” which the Program uses, 
but the LLM cannot “see”.

Using the track mask to detect if the car is on or off-track was a bad idea. 

Code Logic 
Errors

Wrong 
Implementation 

of Logic

Wrong High-level Plan
Wrong 

hyperparameters

Wrong 
assumptions over 
available inputs



Summary

1. Steering LLMs towards Code Generation depends on the Programmer providing the relevant context to the 
Model, for understanding the Program's Design Principles, System Understanding and Domain Understanding.

2. Debugging and generating new code in physical control systems is extremely difficult. It’s not fix patterns that 
you can rehash like in constructing certain types of games or UI. 

3. "Formulating Plan for Code Improvement" can generally works well at a high (and not very useful level).

4. Logic errors can be due to wrong high level plan, wrong implementation logic, wrong 
hyperparameters, or wrong input assumptions. Neither the code agent or Human has vision over what 
is happening.



Step 2: Agent Generates Code for the Plan

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?



Limitations of Agentic-LLM corrective feedback

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Simulator / 
Result

Code 
Agent

Code
Human Specified 

Goal

Code Agent sees 

(1) Human Specified Goals



Limitations of Agentic-LLM corrective feedback

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Simulator / 
Result

Code 
Agent

Code
Human Specified 

Goal

(1) Easy: Execution Error

Code Agent sees 

(1) Human Specified Goals



Limitations of Agentic-LLM corrective feedback

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Simulator / 
Result

Code 
Agent

Code
Human Specified 

Goal

Execution 
Error Trace

Code Agent sees 

(1) Human Specified Goals,
(2) Execution error Trace
(3) Current Code

(1) Easy: Execution Error



Limitations of Agentic-LLM corrective feedback

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Simulator / 
Result

Code 
Agent

Code

(2) Medium Stuck: No more explicit execution 
errors, but cannot reach human specified goal

Human Specified 
Goal

Execution 
Error Trace

Code Agent sees 

(1) Human Specified Goals,
(2) Execution error Trace
(3) Current Code



Limitations of Agentic-LLM corrective feedback

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Code Agent sees 

(1) Human Specified Goals,
(2) Current Code (no more execution Errors)
(3) Human Feedback of the simulator results

Simulator / 
Result

Code 
Agent

Code

Provides 
Feedback

Written 
Feedback 
(Prompt)

Human Specified 
Goal



Limitations of Agentic-LLM corrective feedback

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Code Agent sees 

(1) Human Specified Goals,
(2) Current Code (no more execution Errors)
(3) Human Feedback of the simulator results

Simulator / 
Result

Code 
Agent

Code

(3) Hard Stuck: The code keeps getting updated, but the simulation 
result is the same.. Irrecoverable Failure

Provides 
Feedback

Written 
Feedback 
(Prompt)

Human Specified 
Goal



Self-Correction can fail miserably

What the user sees:

What the User instructs:

 Rewrite the above function. 
The problem with this code is 
the car moves forward but 
failed to make a sharp turn. 

It should look ahead alot more, 
and slow down alot more when 
it detects a turn upcoming

Code LLM is trying Really hard. But the same exact error 
keeps happening. 

→ The Key Problem: The code generation model has no 
idea about what it is doing in the actual environment. 
The only feedback is from the human.

But the human has no idea what’s wrong with the code. 
It’s a blind leading the blind situation.



“IF Car on 

Track”

Human Guided 

Attempt: Track 

Contour

First Attempt: 

Track_mask

If track_mask[car_position]==0:

     on_track=False 

Wrong because of what the mask looks like. 

Failure to understand or change strategy

Irrecoverable Failures that cannot be handled by “think step-by-step” or 
Self-correction

Generated Logic / Code Correctly

Human Guidance Required

Irrecoverable Failure



“IF Car on 

Track”

Human Guided 

Attempt: Track 

Contour

First Attempt: 

Track_mask

If track_mask[car_position]==0:

     on_track=False 

Wrong because of what the mask looks like. 

Failure to understand or change strategy

Irrecoverable Failures that cannot be handled by “think step-by-step” or 
Self-correction

pointPolygonTest

(car_position, 

track_contour)

Generated Logic / Code Correctly

Human Guidance Required

Irrecoverable Failure

Car Position 

(x,y)

RGB 

Range
Detect Car

RGB Range

Detect Track 

Boundaries

Drawing Image 

Border

mask = cv2.inRange(image, lower_track_color, upper_track_color)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)



“IF Car on 

Track”

Human Guided 

Attempt: Track 

Contour

First Attempt: 

Track_mask

If track_mask[car_position]==0:

     on_track=False 

Wrong because of what the mask looks like. 

Failure to understand or change strategy

Irrecoverable Failures that cannot be handled by “think step-by-step” or 
Self-correction

pointPolygonTest

(car_position, 

track_contour)

Generated Logic / Code Correctly

Human Guidance Required

Irrecoverable Failure

Car Position 

(x,y)

RGB 

Range
Detect Car

RGB Range

Detect Track 

Boundaries

Drawing Image 

Border

Advanced Tool use required

mask = cv2.inRange(image, lower_track_color, upper_track_color)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Human Creativity/Advanced Reasoning required.

(1) Understanding that the "pointPolygonTest()" is 

failing, is because boundary is not closed.

(2) Solution is to close the boundary by drawing an 

image border during preprocessing.



Summary

1. Steering LLMs towards Code Generation depends on the Programmer providing the relevant context to the 
Model, for understanding the Program's Design Principles, System Understanding and Domain Understanding.

2. Debugging and generating new code in physical control systems is extremely difficult. It’s not fix patterns that 
you can rehash like in constructing certain types of games or UI. 

3. "Formulating Plan for Code Improvement" can generally works well at a high (and not very useful level).

4. Logic errors can be due to wrong high level plan, wrong implementation logic, wrong 
hyperparameters, or wrong input assumptions. Neither the code agent or Human has vision over what 
is happening.

5. Code Generation with Agentic self-corrective Feedback, and human feedback has irrecoverable failure.



Overcoming the Limits of Agentic-LLM corrective feedback

Code Agent sees 

(1) Human Specified Goals,
(2) Current Code (no more execution Errors)
(3) Human Feedback of the simulator results
(4) Reconstructed "Image" of the Situation

Simulator / 
Result

Code 
Agent

Code

(3) Hard Stuck: The code keeps getting updated, but the simulation 
result is the same.. Irrecoverable Failure
SOLUTION: Introduce Corrective Feedback with External Help

Provides Feedback at a 
“Goals”” Level

Written 
Feedback 
(Prompt)

Human Specified 
Goal

Multimodal LM 
/ Tool Use

Provides Feedback at a 
“Implementation” Level



Step 3: Writing Tests for Desired Behavior

Assumption: We can keep decomposing until task complexity is low enough, such that the 
Multimodal LM p(y|x) can handle it; potentially with prompt examples or zero-shot

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

“Is the car on-track, off-
track, or spiraling? Answer 
with only one of the three 
options.”

Vision LM

{On-track, 
close-to-edge, 
Off-center-left, 
Off-center-right, 
Off-track, 
Left-turn Upcoming
Right-turn Upcoming
Spiralling,}

Why not just use a Computer Vision Model? 
In the factory, spatio-temporal data from logs, positional coordinates, allows us to reconstruct the “image” of what happened and the sequence of events. 



Test Generator  p(x, y) = p(x) * p(y|x)

Step 3: Writing Tests for Desired Behavior

X~Simulation p(x) Multimodal LM p(y|x)

Obtain Rewards for 
RL Agent

Test-cases for Source 
Code Logic

Knowledge 
Distillation

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

In theory, if we had a way to generate Test cases that cover the distribution 
of inputs and correct labels, that means we have the ability to generate 
synthetic data to do many things (RL rewards, training data, knowledge 
distillation…)…..  Sounds too good to be true.



Step 3: Writing Tests for Desired Behavior

Assumption: We can keep decomposing until task complexity is low enough, such that the 
Multimodal LM p(y|x) can handle it; potentially with prompt examples or zero-shot

Problem: We also can’t keep decomposing Tasks: Inference Speed, LLM costs.

Vision LM

Small Models

Few-shot Performance 
limitations, Latency too High

No data to Train

We need to address the latency 
of large models in generating 
synthetic Tests and Labels.

(especially if we do very granular 
decomposition of tasks)

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes



Summary

1. Steering LLMs towards Code Generation depends on the Programmer providing the relevant context to the 
Model, for understanding the Program's Design Principles, System Understanding and Domain Understanding.

2. Debugging and generating new code in physical control systems is extremely difficult. It’s not fix 
patterns that you can rehash like in constructing certain types of games or UI. 

3. "Formulating Plan for Code Improvement" can generally works well at a high (and not very useful level).

4. Logic errors can be due to wrong high level plan, wrong implementation logic, wrong 
hyperparameters, or wrong input assumptions. Neither the code agent or Human has vision over what 
is happening.

5. Code Generation with Agentic self-corrective Feedback, and human feedback has irrecoverable failure.

6. Vision LMs can Providing Feedback (Labels) on the correctness of small functions, but we need to 
address the latency of Vision LMs for synthetic generation.



“Can I use LLMs for Code Generation in my Organisation"

Code Generation (actually Code Repair) is Problem-solving in 
Software Systems. Whether the effort is successful depends on 

• Constraints that the Code needs to operate in.

• Expectations of the end-users.

• Quality of the current source code.

• Availability of well written documentation or APIs.

• Ability of Programmers themselves to steer the LLM based on strong technical 
knowledge.

• Mature tech organization with controls over code quality of LLM generated 
code to be checked in.


	Slide 1: Vibe Coding a Car Racing Simulator (Failed) 
	Slide 2: Troubleshooting and Code Generation workflow without LLMs
	Slide 3: Troubleshooting and Code Generation workflow with LLMs 
	Slide 4: Summary
	Slide 5
	Slide 6: Formulating Plan for Code Improvement 
	Slide 7: Summary
	Slide 8: Formulating Plan for Code Improvement 
	Slide 9: Formulating Plan for Code Improvement 
	Slide 10: Formulating Plan for Code Improvement 
	Slide 11: Step 2: Agent Generates Code for the Plan: Code Logic Errors
	Slide 12: Step 2: Agent Generates Code for the Plan: Code Logic Errors
	Slide 13: Step 2: Agent Generates Code for the Plan: Code Logic Errors
	Slide 14: Step 2: Agent Generates Code for the Plan: Code Logic Errors
	Slide 15: Step 2: Agent Generates Code for the Plan: Code Logic Errors
	Slide 16: Step 2: Agent Generates Code for the Plan: Code Logic Errors
	Slide 17: Summary
	Slide 18: Step 2: Agent Generates Code for the Plan
	Slide 19: Limitations of Agentic-LLM corrective feedback
	Slide 20: Limitations of Agentic-LLM corrective feedback
	Slide 21: Limitations of Agentic-LLM corrective feedback
	Slide 22: Limitations of Agentic-LLM corrective feedback
	Slide 23: Limitations of Agentic-LLM corrective feedback
	Slide 24: Limitations of Agentic-LLM corrective feedback
	Slide 25: Self-Correction can fail miserably
	Slide 26: Irrecoverable Failures that cannot be handled by “think step-by-step” or Self-correction
	Slide 27: Irrecoverable Failures that cannot be handled by “think step-by-step” or Self-correction
	Slide 28: Irrecoverable Failures that cannot be handled by “think step-by-step” or Self-correction
	Slide 29: Summary
	Slide 30: Overcoming the Limits of Agentic-LLM corrective feedback
	Slide 31: Step 3: Writing Tests for Desired Behavior
	Slide 32: Step 3: Writing Tests for Desired Behavior
	Slide 33: Step 3: Writing Tests for Desired Behavior
	Slide 34: Summary
	Slide 35: “Can I use LLMs for Code Generation in my Organisation"

