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Troubleshooting and Code Generation workflow with LLMs 
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Summary

1. Steering LLMs towards Code Generation depends on the Programmer providing the relevant context to 
the Model, for understanding the Program's Design Principles, System Understanding and Domain 
Understanding.

However if we can provide ALL context to the LLM, then we should be able to replace 
programmers?

No, because debugging and generating new code in physical control systems is extremely 
difficult. It’s not fix patterns that you can rehash like in constructing certain types of 
games or UI. 
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Formulating Plan for Code Improvement 
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Step 0: (Human provides Goal)

 “Generate the high level logic for a program which will navigate a car on a track. 

The track is surrounded by grass and there are no other obstacles.

 

The only goal is to stay on the track and reach the destination. 

There are four possible actions, steer left, steer right, go forward, brake. 

The only thing the program can observe is the pixel image of a top-down view of where the 

car is. Which might or might not be on the track. “
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Summary

1. Steering LLMs towards Code Generation depends on the Programmer providing the relevant 
context to the Model, for understanding the Program's Design Principles, System Understanding 
and Domain Understanding.

2. Debugging and generating new code in physical control systems is extremely difficult. It’s not fix 
patterns that you can rehash like in constructing certain types of games or UI. 

3. "Formulating Plan for Code Improvement" can generally works well at a high (and not very useful level).



Formulating Plan for Code Improvement 
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Step 1: Agent Formulate Plan for Code

Main Control Loop

• While the car has not reached the destination:

1. Determine Position Relative to Track

• Assess the car's location:

• In Track: If the car is on the track based on pixel analysis.

• Off Track: If the car is off the track (i.e., on the grass).

2. Decision Making

• Based on the car's relative position:

• If On Track:

• Check for upcoming turns:

• If a turn is detected, decide whether to:

• Brake: If speed needs to be reduced.

• Steer Left/Right: Adjust the steering to follow the track.

• If no turns are imminent:

• Action: Go forward.

• If Off Track:

• Determine the direction to steer based on pixel analysis:

• If the car is off to the left, steer right to realign.

• If the car is off to the right, steer left to realign.

3. Execute Action

• Perform the chosen action (steer left, steer right, go forward, brake).

• Update the car's state (position and orientation) based on the action.

Yes



Formulating Plan for Code Improvement 

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Step 2: Agent Generates Code for the Plan
Yes

Oops



Formulating Plan for Code Improvement 
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Step 2: Agent Generates Code for the Plan
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Oops



Step 2: Agent Generates Code for the Plan: Code Logic Errors
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How can the model verify this line is as intended?
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Step 2: Agent Generates Code for the Plan: Code Logic Errors

“Track Mask” which the Program uses, 
but the LLM cannot “see”.

Using the track mask to detect if the car is on or off-track was a bad idea. 

Code Logic 
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Wrong High-level Plan
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available inputs



Summary

1. Steering LLMs towards Code Generation depends on the Programmer providing the relevant context to the 
Model, for understanding the Program's Design Principles, System Understanding and Domain Understanding.

2. Debugging and generating new code in physical control systems is extremely difficult. It’s not fix patterns that 
you can rehash like in constructing certain types of games or UI. 

3. "Formulating Plan for Code Improvement" can generally works well at a high (and not very useful level).

4. Logic errors can be due to wrong high level plan, wrong implementation logic, wrong 
hyperparameters, or wrong input assumptions. Neither the code agent or Human has vision over what 
is happening.
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Limitations of Agentic-LLM corrective feedback
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Limitations of Agentic-LLM corrective feedback
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Limitations of Agentic-LLM corrective feedback
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Limitations of Agentic-LLM corrective feedback
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Limitations of Agentic-LLM corrective feedback
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Self-Correction can fail miserably

What the user sees:

What the User instructs:

 Rewrite the above function. 
The problem with this code is 
the car moves forward but 
failed to make a sharp turn. 

It should look ahead alot more, 
and slow down alot more when 
it detects a turn upcoming

Code LLM is trying Really hard. But the same exact error 
keeps happening. 

→ The Key Problem: The code generation model has no 
idea about what it is doing in the actual environment. 
The only feedback is from the human.

But the human has no idea what’s wrong with the code. 
It’s a blind leading the blind situation.
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Attempt: Track 

Contour

First Attempt: 

Track_mask

If track_mask[car_position]==0:

     on_track=False 

Wrong because of what the mask looks like. 

Failure to understand or change strategy

Irrecoverable Failures that cannot be handled by “think step-by-step” or 
Self-correction

pointPolygonTest

(car_position, 

track_contour)

Generated Logic / Code Correctly

Human Guidance Required

Irrecoverable Failure

Car Position 

(x,y)

RGB 

Range
Detect Car

RGB Range

Detect Track 

Boundaries

Drawing Image 

Border

mask = cv2.inRange(image, lower_track_color, upper_track_color)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)



“IF Car on 

Track”

Human Guided 

Attempt: Track 

Contour

First Attempt: 

Track_mask

If track_mask[car_position]==0:

     on_track=False 

Wrong because of what the mask looks like. 

Failure to understand or change strategy

Irrecoverable Failures that cannot be handled by “think step-by-step” or 
Self-correction

pointPolygonTest

(car_position, 

track_contour)

Generated Logic / Code Correctly

Human Guidance Required

Irrecoverable Failure

Car Position 

(x,y)

RGB 

Range
Detect Car

RGB Range

Detect Track 

Boundaries

Drawing Image 

Border

Advanced Tool use required

mask = cv2.inRange(image, lower_track_color, upper_track_color)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Human Creativity/Advanced Reasoning required.

(1) Understanding that the "pointPolygonTest()" is 

failing, is because boundary is not closed.

(2) Solution is to close the boundary by drawing an 

image border during preprocessing.



Summary

1. Steering LLMs towards Code Generation depends on the Programmer providing the relevant context to the 
Model, for understanding the Program's Design Principles, System Understanding and Domain Understanding.

2. Debugging and generating new code in physical control systems is extremely difficult. It’s not fix patterns that 
you can rehash like in constructing certain types of games or UI. 

3. "Formulating Plan for Code Improvement" can generally works well at a high (and not very useful level).

4. Logic errors can be due to wrong high level plan, wrong implementation logic, wrong 
hyperparameters, or wrong input assumptions. Neither the code agent or Human has vision over what 
is happening.

5. Code Generation with Agentic self-corrective Feedback, and human feedback has irrecoverable failure.



Overcoming the Limits of Agentic-LLM corrective feedback
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Step 3: Writing Tests for Desired Behavior

Assumption: We can keep decomposing until task complexity is low enough, such that the 
Multimodal LM p(y|x) can handle it; potentially with prompt examples or zero-shot

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

“Is the car on-track, off-
track, or spiraling? Answer 
with only one of the three 
options.”

Vision LM

{On-track, 
close-to-edge, 
Off-center-left, 
Off-center-right, 
Off-track, 
Left-turn Upcoming
Right-turn Upcoming
Spiralling,}

Why not just use a Computer Vision Model? 
In the factory, spatio-temporal data from logs, positional coordinates, allows us to reconstruct the “image” of what happened and the sequence of events. 



Test Generator  p(x, y) = p(x) * p(y|x)

Step 3: Writing Tests for Desired Behavior

X~Simulation p(x) Multimodal LM p(y|x)

Obtain Rewards for 
RL Agent

Test-cases for Source 
Code Logic

Knowledge 
Distillation

Formulate Plan 
for Code 
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Tests

No

End
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Code Generation/ Repair 
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Yes

In theory, if we had a way to generate Test cases that cover the distribution 
of inputs and correct labels, that means we have the ability to generate 
synthetic data to do many things (RL rewards, training data, knowledge 
distillation…)…..  Sounds too good to be true.



Step 3: Writing Tests for Desired Behavior

Assumption: We can keep decomposing until task complexity is low enough, such that the 
Multimodal LM p(y|x) can handle it; potentially with prompt examples or zero-shot

Problem: We also can’t keep decomposing Tasks: Inference Speed, LLM costs.

Vision LM

Small Models

Few-shot Performance 
limitations, Latency too High

No data to Train

We need to address the latency 
of large models in generating 
synthetic Tests and Labels.

(especially if we do very granular 
decomposition of tasks)
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End
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Code Generation/ Repair 
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Yes



Summary

1. Steering LLMs towards Code Generation depends on the Programmer providing the relevant context to the 
Model, for understanding the Program's Design Principles, System Understanding and Domain Understanding.

2. Debugging and generating new code in physical control systems is extremely difficult. It’s not fix 
patterns that you can rehash like in constructing certain types of games or UI. 

3. "Formulating Plan for Code Improvement" can generally works well at a high (and not very useful level).

4. Logic errors can be due to wrong high level plan, wrong implementation logic, wrong 
hyperparameters, or wrong input assumptions. Neither the code agent or Human has vision over what 
is happening.

5. Code Generation with Agentic self-corrective Feedback, and human feedback has irrecoverable failure.

6. Vision LMs can Providing Feedback (Labels) on the correctness of small functions, but we need to 
address the latency of Vision LMs for synthetic generation.



“Can I use LLMs for Code Generation in my Organisation"

Code Generation (actually Code Repair) is Problem-solving in 
Software Systems. Whether the effort is successful depends on 

• Constraints that the Code needs to operate in.

• Expectations of the end-users.

• Quality of the current source code.

• Availability of well written documentation or APIs.

• Ability of Programmers themselves to steer the LLM based on strong technical 
knowledge.

• Mature tech organization with controls over code quality of LLM generated 
code to be checked in.
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