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Summary

1. Troubleshooting and Code Generation for Systems and Applications is >10X more complicated than 
Academic Code generation benchmarks.

2. End-to-End generation is Impossible. Therefore, we need to study the human troubleshooting 
workflow, to decompose the problem into Tasks that CodeAgent LM can focus on.

3. "Isolating Functional Blocks" and "Understanding Source Code Logic" has dependencies on 
Understanding the Program's Design Principles, System Causal Graph and Domain Understanding.

4. "Formulating Plan for Code Improvement" generally works well at a high (and not very useful level).

5. Logic errors can be due to wrong high level plan, wrong implementation logic, wrong 
hyperparameters, or wrong input assumptions. Neither the code agent or Human has vision over what 
is happening.

6. Code Generation with Agentic self-corrective Feedback, and human feedback has irrecoverable failure.

7. Vision LMs can Providing Feedback (Labels) on the correctness of small functions, but we need to 
address the latency of Vision LMs for synthetic generation.

8. Vision LMs can potentially be used as a reward generator in RL for Code Generators, or distilled into 
small models which perform the desired functionality (instead of code).

9. Counterfactual Tests should be generated which check whether the code is faithful to the High level 
plan approved by the human.



Rule-based Planning and Control Systems

Q: What are Rule-based Planning and Control Systems? 

A: Logistics and Assembly Related Systems. 

Q: Aren’t these “Solved by RL”? 

A: “Low-level” path planning and navigation are handled by RL. But logistics 

and coordination are still handled by Rule-based Planning Systems

Media Images from https://carbuyer.com.sg/hyundai-motor-group-innovation-centre-singapore-opens/



Troubleshooting and Generation benchmarks vs ACTUAL production code

Academic Open-source Code Benchmarks Real-world Complex Software Systems

Single file, single function
50 of lines of isolated functional code 

100 files, function taking input from other 
modules. 100,000 lines of code

Well-specified function from the docstring. 
Description and range of expected behavior.

No comments, poorly commented, or function 
behavior described in other documentation (not 
always correct)

Only one isolated system, inputs well 
understood. 

Interfacing with multiple systems, inputs 
dependent on the output of other complex 
systems.

Mostly Python Legacy code and functions (C#, C++, Ladder 
Diagrams – PLC)

Output can be verified at the functional level Output verified in simulation and then in 
production. 

Direct Performance Gains from Training on 
Github Repositories, many of which contain 
answer to leetcode style questions

Not clear where to get raw performance gains 
from. Factory operational environment codes 
dissimilar to anything seen on the internet. End-
to-end training seems impossible.

Correctness around 70-80% Correctness < 0.1%?!



Code Benchmarks Vs Software Issues in the Factory

Real-world Software Systems

Logistics System is assigning wrong 
mission orders and wrong destinations

Traffic Jam is occuring near the buffer 
(waiting area), too many AGVs assigned 
to the same buffer area

AGVs switching from Automatic to 
Manual mode on wake-sleep command

AGVs stop moving in a particular region 
of the factory 

Fixing Code Generation Errors for Large Language Models, 
Hao Wen et al., 2024 https://arxiv.org/pdf/2409.00676

Academic Code Benchmarks



Summary

1. Troubleshooting and Code Generation for Systems and Applications is >10X more complicated than 
Academic Code generation benchmarks.

2. End-to-End generation is Impossible. Therefore, we need to study the human troubleshooting 
workflow, to decompose the problem into Functional Tasks that CodeAgent LM can assist the human 
on.



Troubleshooting and Code Generation workflow without LLMs

Software 
Engineer

Program Design 
Principles and 
objectives

Read and Understand 
Error Message

Understanding of System 
Interactions, Databases, Data 
Flow, API, Routing, Network

Document
ation

Code

Isolates 
Error in 
CodeNo

Yes

Formulate Plan 
for Code 
Improvement

Write Tests for 
Desired Behavior 
(Ideal)

Passes 
Tests

Code Generation 
for new functions, 
or code Repair

No

Debugging

End

Yes

Write new Logs to 
Inspect Program 
States and Variables

Isolate to 
functional blocks or 
logic in the code

Understand 
Source Code 
Logic

(Activate or Create 
Temporary 
debugging logs)

(Introspection, updated April 2025)

START

ERROR 
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CODE

Background 
Technical 
Knowledge

Programming



Troubleshooting and Code Generation workflow with LLMs 
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Code-LLM

SourceCode RAG



Code RAG 

Strategy for Chunking: Naturally we want to utilise concrete syntax trees and to just 

have “functions” or classes as code blocks. 

Programming 
Language 

Parser

Tree with nodes represent expressions, statements, classes, 

functions and other constructs.

Open-source Programming Language Parsers: https://tree-sitter.github.io/tree-sitter
Chunking Code for Retrieval with Size Constraints: https://suzyahyah.github.io/code/2024/07/07/Chunking-code-for-RAG.html 

Node

Node

Node

Node Stack

Its not meaningful to retrieve a 1000 

line function or 1000 line class, nor 5 

lines of variable assignment.

Hence we want functional chunking 

but with some meaningful Size 

Constraints which still allow 

natural syntax based chunking.  

(DFS + BFS)

Node

C1 C2 C3

For each child_node: 

    if size > max_threshold_size:

        recursive_chunk(child_node)

    else: 

        if stack[-1] + child_node > min_threshold_size:

            result.append(stack.pop() + child_node)

        else:

            stack.append(child_node)  

Result List

C1

DFS

BFS

Tree-sitter

https://tree-sitter.github.io/tree-sitter
https://suzyahyah.github.io/code/2024/07/07/Chunking-code-for-RAG.html


Summary

1. Troubleshooting and Code Generation for Systems and Applications is >10X more complicated than 
Academic Code generation benchmarks.

2. End-to-End generation is Impossible. Therefore, we need to study the human troubleshooting 
workflow, to decompose the problem into Tasks that CodeAgent LM can focus on.

3. Steering LLMs towards Code Generation depends on the Programmer providing the relevant context to 
the Model, for understanding the Program's Design Principles, System Understanding and Domain 
Understanding.

However if we can provide ALL context to the LLM, then we should be able to replace 
programmers?

No, because debugging and generating new code in physical control systems is extremely 
difficult. It’s not fix patterns that you can rehash like in constructing certain types of 
games or UI. 



The Car is going off-track 
and not making the turn 
early enough

Gen Z 

Chat-GPT 

Programmer

Start

Top-down Image of 
the Car-racing Track

Chat GPT Programmer Workflow

LLM Formulate 
Plan for Code 
Improvement

Passes 
Tests

No

End

Tests (Visual or 
generated) for 
Desired Behavior

LLM Code Generation/ 
Repair Implementing Plan

Yes

Human Provided 
Goal



Formulating Plan for Code Improvement 

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Step 0: (Human provides Goal)

 “Generate the high level logic for a program which will navigate a car on a track. 

The track is surrounded by grass and there are no other obstacles.

 

The only goal is to stay on the track and reach the destination. 

There are four possible actions, steer left, steer right, go forward, brake. 

The only thing the program can observe is the pixel image of a top-down view of where the 

car is. Which might or might not be on the track. “

Yes

Human Provided 
Goal
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Formulating Plan for Code Improvement 

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Step 1: Agent Formulate Plan for Code

Main Control Loop

• While the car has not reached the destination:

1. Determine Position Relative to Track

• Assess the car's location:

• In Track: If the car is on the track based on pixel analysis.

• Off Track: If the car is off the track (i.e., on the grass).

2. Decision Making

• Based on the car's relative position:

• If On Track:

• Check for upcoming turns:

• If a turn is detected, decide whether to:

• Brake: If speed needs to be reduced.

• Steer Left/Right: Adjust the steering to follow the track.

• If no turns are imminent:

• Action: Go forward.

• If Off Track:

• Determine the direction to steer based on pixel analysis:

• If the car is off to the left, steer right to realign.

• If the car is off to the right, steer left to realign.

3. Execute Action

• Perform the chosen action (steer left, steer right, go forward, brake).

• Update the car's state (position and orientation) based on the action.

Yes



Formulating Plan for Code Improvement 

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Step 2: Agent Generates Code for the Plan
Yes

Oops



Formulating Plan for Code Improvement 

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Step 2: Agent Generates Code for the Plan
Yes

Wrong Implementation 
of Logic

Wrong High-level Plan

Wrong 
hyperparameters

Wrong assumptions 
over available inputs

Potential Errors

Oops



Step 2: Agent Generates Code for the Plan: Code Logic Errors

Code Logic 
Errors

Wrong 
Implementation 

of Logic

Wrong High-level Plan
Wrong 

hyperparameters

Wrong 
assumptions over 
available inputs

Is this line correctly written?
How can the model verify this line is as intended?
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Step 2: Agent Generates Code for the Plan: Code Logic Errors
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Is this line correctly written?
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Step 2: Agent Generates Code for the Plan: Code Logic Errors

“Track Mask” which the Program uses, 
but the LLM cannot “see”.

Using the track mask to detect if the car is on or off-track was a bad idea. 

Code Logic 
Errors

Wrong 
Implementation 

of Logic

Wrong High-level Plan
Wrong 

hyperparameters

Wrong 
assumptions over 
available inputs
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Step 2: Agent Generates Code for the Plan

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?



Limitations of Agentic-LLM corrective feedback

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?
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Limitations of Agentic-LLM corrective feedback

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Simulator / 
Result

Code 
Agent

Code
Human Specified 

Goal

Execution 
Error Trace

Code Agent sees 

(1) Human Specified Goals,
(2) Execution error Trace
(3) Current Code

(1) Easy: Execution Error



Limitations of Agentic-LLM corrective feedback

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Simulator / 
Result

Code 
Agent

Code

(2) Medium Stuck: No more explicit execution 
errors, but cannot reach human specified goal

Human Specified 
Goal

Execution 
Error Trace

Code Agent sees 

(1) Human Specified Goals,
(2) Execution error Trace
(3) Current Code



Limitations of Agentic-LLM corrective feedback

Formulate Plan 
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Passes 
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End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Code Agent sees 

(1) Human Specified Goals,
(2) Current Code (no more execution Errors)
(3) Human Feedback of the simulator results

Simulator / 
Result

Code 
Agent

Code

Provides 
Feedback
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Human Specified 
Goal



Limitations of Agentic-LLM corrective feedback

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Code Agent sees 

(1) Human Specified Goals,
(2) Current Code (no more execution Errors)
(3) Human Feedback of the simulator results

Simulator / 
Result

Code 
Agent

Code

(3) Hard Stuck: The code keeps getting updated, but the simulation 
result is the same.. Irrecoverable Failure

Provides 
Feedback

Written 
Feedback 
(Prompt)

Human Specified 
Goal



Self-Correction can fail miserably

What the user sees:

What the User instructs:

 Rewrite the above function. 
The problem with this code is 
the car moves forward but 
failed to make a sharp turn. 

It should look ahead alot more, 
and slow down alot more when 
it detects a turn upcoming

Code LLM is trying Really hard. But the same exact error 
keeps happening. 

→ The Key Problem: The code generation model has no 
idea about what it is doing in the actual environment. 
The only feedback is from the human.

But the human has no idea what’s wrong with the code. 
It’s a blind leading the blind situation.



“IF Car on 

Track”

Human Guided 

Attempt: Track 

Contour

First Attempt: 

Track_mask

If track_mask[car_position]==0:

     on_track=False 

Wrong because of what the mask looks like. 

Failure to understand or change strategy

Irrecoverable Failures that cannot be handled by “think step-by-step” or 
Self-correction

Generated Logic / Code Correctly

Human Guidance Required

Irrecoverable Failure



“IF Car on 

Track”

Human Guided 

Attempt: Track 

Contour

First Attempt: 

Track_mask

If track_mask[car_position]==0:

     on_track=False 

Wrong because of what the mask looks like. 

Failure to understand or change strategy

Irrecoverable Failures that cannot be handled by “think step-by-step” or 
Self-correction

pointPolygonTest

(car_position, 

track_contour)

Generated Logic / Code Correctly

Human Guidance Required

Irrecoverable Failure

Car Position 

(x,y)

RGB 

Range
Detect Car

RGB Range

Detect Track 

Boundaries

Drawing Image 

Border

mask = cv2.inRange(image, lower_track_color, upper_track_color)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)



“IF Car on 

Track”

Human Guided 

Attempt: Track 

Contour

First Attempt: 

Track_mask

If track_mask[car_position]==0:

     on_track=False 

Wrong because of what the mask looks like. 

Failure to understand or change strategy

Irrecoverable Failures that cannot be handled by “think step-by-step” or 
Self-correction

pointPolygonTest

(car_position, 

track_contour)

Generated Logic / Code Correctly

Human Guidance Required

Irrecoverable Failure

Car Position 

(x,y)

RGB 

Range
Detect Car

RGB Range

Detect Track 

Boundaries

Drawing Image 

Border

Advanced Tool use required

mask = cv2.inRange(image, lower_track_color, upper_track_color)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Human Creativity/Advanced Reasoning required.

(1) Understanding that the "pointPolygonTest()" is 

failing, is because boundary is not closed.

(2) Solution is to close the boundary by drawing an 

image border during preprocessing.
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Overcoming the Limits of Agentic-LLM corrective feedback

Code Agent sees 

(1) Human Specified Goals,
(2) Current Code (no more execution Errors)
(3) Human Feedback of the simulator results
(4) Reconstructed "Image" of the Situation

Simulator / 
Result

Code 
Agent

Code

(3) Hard Stuck: The code keeps getting updated, but the simulation 
result is the same.. Irrecoverable Failure
SOLUTION: Introduce Corrective Feedback with External Help

Provides Feedback at a 
“Goals”” Level

Written 
Feedback 
(Prompt)

Human Specified 
Goal

Multimodal LM 
/ Tool Use

Provides Feedback at a 
“Implementation” Level



Step 3: Writing Tests for Desired Behavior

Assumption: We can keep decomposing until task complexity is low enough, such that the 
Multimodal LM p(y|x) can handle it; potentially with prompt examples or zero-shot

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

“Is the car on-track, off-
track, or spiraling? Answer 
with only one of the three 
options.”

Vision LM

{On-track, 
close-to-edge, 
Off-center-left, 
Off-center-right, 
Off-track, 
Left-turn Upcoming
Right-turn Upcoming
Spiralling,}

Why not just use a Computer Vision Model? 
In the factory, spatio-temporal data from logs, positional coordinates, allows us to reconstruct the “image” of what happened and the sequence of events. 



Test Generator  p(x, y) = p(x) * p(y|x)

Step 3: Writing Tests for Desired Behavior

X~Simulation p(x) Multimodal LM p(y|x)

Obtain Rewards for 
RL Agent

Test-cases for Source 
Code Logic

Knowledge 
Distillation

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes

In theory, if we had a way to generate Test cases that cover the distribution 
of inputs and correct labels, that means we have the ability to generate 
synthetic data to do many things (RL rewards, training data, knowledge 
distillation…)…..  Sounds too good to be true.



Step 3: Writing Tests for Desired Behavior

Assumption: We can keep decomposing until task complexity is low enough, such that the 
Multimodal LM p(y|x) can handle it; potentially with prompt examples or zero-shot

Problem: We also can’t keep decomposing Tasks: Inference Speed, LLM costs.

Vision LM

Small Models

Few-shot Performance 
limitations, Latency too High

No data to Train

We need to address the latency 
of large models in generating 
synthetic Tests and Labels.

(especially if we do very granular 
decomposition of tasks)

Formulate Plan 
for Code 
Improvement

Passes 
Tests

No

End

Write Tests for 
Desired Behavior

Code Generation/ Repair 
Implementing Plan

Yes
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Addressing the latency of large models in generating synthetic data.

“Where does In-context Learning happen in Large Language Models”. Sia, Mueller, Duh., 2024 NeurIPS

In LLMs, there is a “Task Recognition Point”, where the Model no longer needs 
to perform self-attention over the context (instructions and examples) to 
perform the Task.

What if we had a way to Increase  Inference Speed by >50%, without 
Sacrificing Performance?



Addressing the latency of large models in generating synthetic data.

“Where does In-context Learning happen in Large Language Models”. Sia, Mueller, Duh., 2024 NeurIPS

In LLMs, there is a “Task Recognition Point”, where the Model no longer needs to perform self-attention over 
the context (instructions and examples) to perform the Task.



Addressing the latency of large models in generating synthetic data.

“Where does In-context Learning happen in Large Language Models”. Sia, Mueller, Duh., 2024 NeurIPS



Implication For Code Generation

Curve
Detector

Knowledge Distillation Code: from 
curveDetector import 

detect_curve()

Reward function in RL, 
( Train for e.g., with PPO )

Code: Write 
Logic for curve 

detection

CodeLM

“IF detect_curve():”
Option1: CodeLM generates the code for the function, using 
Multimodal LM as reward

Multimod
al LLM

Simulation

Option2: Lightweight model is distilled from Multimodal LM 
which we import as a blackbox function.

Labels

Decomposed Tasks for 
Over-kill Expensive Model

{On-track, 
close-to-edge, 
Off-center-left, 
Off-center-right, 
Off-track, 
Left-turn Upcoming
Right-turn Upcoming
Spiralling,}
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hyperparameters, or wrong input assumptions. Neither the code agent or Human has vision over what 
is happening.
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8. Vision LMs can Providing Feedback (Labels) on the correctness of small functions, but we need to 
address the latency of Vision LMs for synthetic generation.

9. Vision LMs can potentially be used as a reward generator in RL for Code Generators, or distilled into 
small models which perform the desired functionality (instead of code).



Tests Generation: Logic Robustness Check
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End

Yes
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Desired Behavior

Code Generation/ Repair 
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Problem: Code Generated is not Consistent with the Plans

“Intuitively, we would like the provided interpretation to reflect 

the true reasoning process of the model when making a 

decision.

-- Jacovi & Goldberg (2020) Towards Faithfully Interpretable NLP Systems: How Should We 

Define and Evaluate Faithfulness? ACL

How to Generate Tests to Check expected Behavior based on Plans?
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Summary

1. Troubleshooting and Code Generation for Systems and Applications is >10X more complicated than Academic Code 
generation benchmarks.

2. End-to-End generation is Impossible. Therefore, we need to study the human troubleshooting workflow, to 
decompose the problem into Tasks that CodeAgent LM can focus on.

3. "Isolating Functional Blocks" and "Understanding Source Code Logic" has dependencies on Understanding the 
Program's Design Principles, System Causal Graph and Domain Understanding.

4. Debugging and generating new code in physical control systems is extremely difficult. It’s not fix patterns that you can rehash like in 
constructing certain types of games or UI. 

5. "Formulating Plan for Code Improvement" can generally works well at a high (and not very useful level).

6. Logic errors can be due to wrong high level plan, wrong implementation logic, wrong hyperparameters, or wrong 
input assumptions. Neither the code agent or Human has vision over what is happening.

7. Code Generation with Agentic self-corrective Feedback, and human feedback has irrecoverable failure.

8. Vision LMs can Providing Feedback (Labels) on the correctness of small functions, but we need to address the latency 
of Vision LMs for synthetic generation.

9. Vision LMs can potentially be used as a reward generator in RL for Code Generators, or distilled into small models 
which perform the desired functionality (instead of code).

10. Counterfactual Tests should be generated which check whether the code is faithful to the High level plan approved by 
the human.



“So can I use LLMs for Code Generation in my Organisation"

Code Generation (actually Code Repair) is Problem-solving in 
Software Systems. Whether the effort is successful depends on 

1. Constraints that the Code needs to operate in.

2. Expectations of the end-users.

3. Quality of the current source code.

4. Availability of well written documentation or APIs.

5. Ability of Programmers themselves to steer the LLM based on strong 
technical knowledge.

6. Mature tech organization with controls over code quality of LLM generated 
code to be checked in.
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