
Limitations of LLM Software Agents for Source
code in Physical Planning and Control systems

Suzanna Sia
1 November 2024

Microsoft Program Synthesis Team (PROSE) Talk

Note: This talk highlights unsolved problems

A better title is “Challenges for a Software Agent …”

Suzanna Sia
1 November 2024

Microsoft Program Synthesis Team (PROSE) Talk

Limitations of LLM Software Agents for Source
code in Physical Planning and Control systems

Summary

1. Troubleshooting and Code Generation for Systems and Applications is >10X more complicated than
Academic Code generation benchmarks.

2. End-to-End generation is Impossible. Therefore, we need to study the human troubleshooting
workflow, to decompose the problem into Tasks that CodeAgent LM can focus on.

3. "Isolating Functional Blocks" and "Understanding Source Code Logic" has dependencies on
Understanding the Program's Design Principles, System Causal Graph and Domain Understanding.

4. "Formulating Plan for Code Improvement" generally works well at a high (and not very useful level).

5. Logic errors can be due to wrong high level plan, wrong implementation logic, wrong
hyperparameters, or wrong input assumptions. Neither the code agent or Human has vision over what
is happening.

6. Code Generation with Agentic self-corrective Feedback, and human feedback has irrecoverable failure.

7. Vision LMs can Providing Feedback (Labels) on the correctness of small functions, but we need to
address the latency of Vision LMs for synthetic generation.

8. Vision LMs can potentially be used as a reward generator in RL for Code Generators, or distilled into
small models which perform the desired functionality (instead of code).

9. Counterfactual Tests should be generated which check whether the code is faithful to the High level
plan approved by the human.

Rule-based Planning and Control Systems

Q: What are Rule-based Planning and Control Systems?

A: Logistics and Assembly Related Systems.

Q: Aren’t these “Solved by RL”?

A: “Low-level” path planning and navigation are handled by RL. But logistics

and coordination are still handled by Rule-based Planning Systems

Media Images from https://carbuyer.com.sg/hyundai-motor-group-innovation-centre-singapore-opens/

Troubleshooting and Generation benchmarks vs ACTUAL production code

Academic Open-source Code Benchmarks Real-world Complex Software Systems

Single file, single function
50 of lines of isolated functional code

100 files, function taking input from other
modules. 100,000 lines of code

Well-specified function from the docstring.
Description and range of expected behavior.

No comments, poorly commented, or function
behavior described in other documentation (not
always correct)

Only one isolated system, inputs well
understood.

Interfacing with multiple systems, inputs
dependent on the output of other complex
systems.

Mostly Python Legacy code and functions (C#, C++, Ladder
Diagrams – PLC)

Output can be verified at the functional level Output verified in simulation and then in
production.

Direct Performance Gains from Training on
Github Repositories, many of which contain
answer to leetcode style questions

Not clear where to get raw performance gains
from. Factory operational environment codes
dissimilar to anything seen on the internet. End-
to-end training seems impossible.

Correctness around 70-80% Correctness < 0.1%?!

Code Benchmarks Vs Software Issues in the Factory

Real-world Software Systems

Logistics System is assigning wrong
mission orders and wrong destinations

Traffic Jam is occuring near the buffer
(waiting area), too many AGVs assigned
to the same buffer area

AGVs switching from Automatic to
Manual mode on wake-sleep command

AGVs stop moving in a particular region
of the factory

Fixing Code Generation Errors for Large Language Models,
Hao Wen et al., 2024 https://arxiv.org/pdf/2409.00676

Academic Code Benchmarks

Summary

1. Troubleshooting and Code Generation for Systems and Applications is >10X more complicated than
Academic Code generation benchmarks.

2. End-to-End generation is Impossible. Therefore, we need to study the human troubleshooting
workflow, to decompose the problem into Functional Tasks that CodeAgent LM can assist the human
on.

Troubleshooting and Code Generation workflow without LLMs

Software
Engineer

Program Design
Principles and
objectives

Read and Understand
Error Message

Understanding of System
Interactions, Databases, Data
Flow, API, Routing, Network

Document
ation

Code

Isolates
Error in
CodeNo

Yes

Formulate Plan
for Code
Improvement

Write Tests for
Desired Behavior
(Ideal)

Passes
Tests

Code Generation
for new functions,
or code Repair

No

Debugging

End

Yes

Write new Logs to
Inspect Program
States and Variables

Isolate to
functional blocks or
logic in the code

Understand
Source Code
Logic

(Activate or Create
Temporary
debugging logs)

(Introspection, updated April 2025)

START

ERROR
OCCURS IN
CODE

Background
Technical
Knowledge

Programming

Troubleshooting and Code Generation workflow with LLMs

Program Design
Principles and
objectives

Read and Understand
Error Message

Understanding of System
Interactions, Databases, Data
Flow, API, Routing, Network

Document
ation

Code

Isolates
Error in
CodeNo

Yes

Formulate Plan
for Code
Improvement

Write Tests for
Desired Behavior
(Ideal)

Passes
Tests

Code Generation
for new functions,
or code Repair

No

Debugging

End

Yes

Write new Logs to
Inspect Program
States and Variables

Isolate to
functional blocks or
logic in the code

Understand
Source Code
Logic

(Activate or Create
Temporary
debugging logs)

START

ERROR
OCCURS IN
CODE

Background
Technical
Knowledge

Programming

Code-LLM

SourceCode RAG

Code RAG

Strategy for Chunking: Naturally we want to utilise concrete syntax trees and to just

have “functions” or classes as code blocks.

Programming
Language

Parser

Tree with nodes represent expressions, statements, classes,

functions and other constructs.

Open-source Programming Language Parsers: https://tree-sitter.github.io/tree-sitter
Chunking Code for Retrieval with Size Constraints: https://suzyahyah.github.io/code/2024/07/07/Chunking-code-for-RAG.html

Node

Node

Node

Node Stack

Its not meaningful to retrieve a 1000

line function or 1000 line class, nor 5

lines of variable assignment.

Hence we want functional chunking

but with some meaningful Size

Constraints which still allow

natural syntax based chunking.

(DFS + BFS)

Node

C1 C2 C3

For each child_node:

 if size > max_threshold_size:

 recursive_chunk(child_node)

 else:

 if stack[-1] + child_node > min_threshold_size:

 result.append(stack.pop() + child_node)

 else:

 stack.append(child_node)

Result List

C1

DFS

BFS

Tree-sitter

https://tree-sitter.github.io/tree-sitter
https://suzyahyah.github.io/code/2024/07/07/Chunking-code-for-RAG.html

Summary

1. Troubleshooting and Code Generation for Systems and Applications is >10X more complicated than
Academic Code generation benchmarks.

2. End-to-End generation is Impossible. Therefore, we need to study the human troubleshooting
workflow, to decompose the problem into Tasks that CodeAgent LM can focus on.

3. Steering LLMs towards Code Generation depends on the Programmer providing the relevant context to
the Model, for understanding the Program's Design Principles, System Understanding and Domain
Understanding.

However if we can provide ALL context to the LLM, then we should be able to replace
programmers?

No, because debugging and generating new code in physical control systems is extremely
difficult. It’s not fix patterns that you can rehash like in constructing certain types of
games or UI.

The Car is going off-track
and not making the turn
early enough

Gen Z

Chat-GPT

Programmer

Start

Top-down Image of
the Car-racing Track

Chat GPT Programmer Workflow

LLM Formulate
Plan for Code
Improvement

Passes
Tests

No

End

Tests (Visual or
generated) for
Desired Behavior

LLM Code Generation/
Repair Implementing Plan

Yes

Human Provided
Goal

Formulating Plan for Code Improvement

Formulate Plan
for Code
Improvement

Passes
Tests

No

End

Write Tests for
Desired Behavior

Code Generation/ Repair
Implementing Plan

Step 0: (Human provides Goal)

 “Generate the high level logic for a program which will navigate a car on a track.

The track is surrounded by grass and there are no other obstacles.

The only goal is to stay on the track and reach the destination.

There are four possible actions, steer left, steer right, go forward, brake.

The only thing the program can observe is the pixel image of a top-down view of where the

car is. Which might or might not be on the track. “

Yes

Human Provided
Goal

Summary

1. Troubleshooting and Code Generation for Systems and Applications is >10X more complicated than
Academic Code generation benchmarks.

2. End-to-End generation is Impossible. Therefore, we need to study the human troubleshooting
workflow, to decompose the problem into Tasks that CodeAgent LM can focus on.

3. "Isolating Functional Blocks" and "Understanding Source Code Logic" has dependencies on
Understanding the Program's Design Principles, System Causal Graph and Domain Understanding.

4. Debugging and generating new code in physical control systems is extremely difficult. It’s not fix
patterns that you can rehash like in constructing certain types of games or UI.

5. "Formulating Plan for Code Improvement" can generally works well at a high (and not very useful level).

Formulating Plan for Code Improvement

Formulate Plan
for Code
Improvement

Passes
Tests

No

End

Write Tests for
Desired Behavior

Code Generation/ Repair
Implementing Plan

Step 1: Agent Formulate Plan for Code

Main Control Loop

• While the car has not reached the destination:

1. Determine Position Relative to Track

• Assess the car's location:

• In Track: If the car is on the track based on pixel analysis.

• Off Track: If the car is off the track (i.e., on the grass).

2. Decision Making

• Based on the car's relative position:

• If On Track:

• Check for upcoming turns:

• If a turn is detected, decide whether to:

• Brake: If speed needs to be reduced.

• Steer Left/Right: Adjust the steering to follow the track.

• If no turns are imminent:

• Action: Go forward.

• If Off Track:

• Determine the direction to steer based on pixel analysis:

• If the car is off to the left, steer right to realign.

• If the car is off to the right, steer left to realign.

3. Execute Action

• Perform the chosen action (steer left, steer right, go forward, brake).

• Update the car's state (position and orientation) based on the action.

Yes

Formulating Plan for Code Improvement

Formulate Plan
for Code
Improvement

Passes
Tests

No

End

Write Tests for
Desired Behavior

Code Generation/ Repair
Implementing Plan

Step 2: Agent Generates Code for the Plan
Yes

Oops

Formulating Plan for Code Improvement

Formulate Plan
for Code
Improvement

Passes
Tests

No

End

Write Tests for
Desired Behavior

Code Generation/ Repair
Implementing Plan

Step 2: Agent Generates Code for the Plan
Yes

Wrong Implementation
of Logic

Wrong High-level Plan

Wrong
hyperparameters

Wrong assumptions
over available inputs

Potential Errors

Oops

Step 2: Agent Generates Code for the Plan: Code Logic Errors

Code Logic
Errors

Wrong
Implementation

of Logic

Wrong High-level Plan
Wrong

hyperparameters

Wrong
assumptions over
available inputs

Is this line correctly written?
How can the model verify this line is as intended?

Step 2: Agent Generates Code for the Plan: Code Logic Errors

Code Logic
Errors

Wrong
Implementation

of Logic

Wrong High-level Plan
Wrong

hyperparameters

Wrong
assumptions over
available inputs

Is this line correctly written?
How can the model verify this line is as intended?

Step 2: Agent Generates Code for the Plan: Code Logic Errors

Code Logic
Errors

Wrong
Implementation

of Logic

Wrong High-level Plan
Wrong

hyperparameters

Wrong
assumptions over
available inputs

Is this line correctly written?
How can the model verify this line is as intended?

Step 2: Agent Generates Code for the Plan: Code Logic Errors

Code Logic
Errors

Wrong
Implementation

of Logic

Wrong High-level Plan
Wrong

hyperparameters

Wrong
assumptions over
available inputs

Is this line correctly written?
How can the model verify this line is as intended?

Step 2: Agent Generates Code for the Plan: Code Logic Errors

Code Logic
Errors

Wrong
Implementation

of Logic

Wrong High-level Plan
Wrong

hyperparameters

Wrong
assumptions over
available inputs

Is this line correctly written?
How can the model verify this line is as intended?

Step 2: Agent Generates Code for the Plan: Code Logic Errors

“Track Mask” which the Program uses,
but the LLM cannot “see”.

Using the track mask to detect if the car is on or off-track was a bad idea.

Code Logic
Errors

Wrong
Implementation

of Logic

Wrong High-level Plan
Wrong

hyperparameters

Wrong
assumptions over
available inputs

Summary

1. Troubleshooting and Code Generation for Systems and Applications is >10X more complicated than
Academic Code generation benchmarks.

2. End-to-End generation is Impossible. Therefore, we need to study the human troubleshooting
workflow, to decompose the problem into Tasks that CodeAgent LM can focus on.

3. "Isolating Functional Blocks" and "Understanding Source Code Logic" has dependencies on
Understanding the Program's Design Principles, System Causal Graph and Domain Understanding.

4. Debugging and generating new code in physical control systems is extremely difficult. It’s not fix patterns that
you can rehash like in constructing certain types of games or UI.

5. "Formulating Plan for Code Improvement" can generally works well at a high (and not very useful level).

6. Logic errors can be due to wrong high level plan, wrong implementation logic, wrong
hyperparameters, or wrong input assumptions. Neither the code agent or Human has vision over what
is happening.

Step 2: Agent Generates Code for the Plan

Formulate Plan
for Code
Improvement

Passes
Tests

No

End

Write Tests for
Desired Behavior

Code Generation/ Repair
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Limitations of Agentic-LLM corrective feedback

Formulate Plan
for Code
Improvement

Passes
Tests

No

End

Write Tests for
Desired Behavior

Code Generation/ Repair
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Simulator /
Result

Code
Agent

Code
Human Specified

Goal

Code Agent sees

(1) Human Specified Goals

Limitations of Agentic-LLM corrective feedback

Formulate Plan
for Code
Improvement

Passes
Tests

No

End

Write Tests for
Desired Behavior

Code Generation/ Repair
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Simulator /
Result

Code
Agent

Code
Human Specified

Goal

(1) Easy: Execution Error

Code Agent sees

(1) Human Specified Goals

Limitations of Agentic-LLM corrective feedback

Formulate Plan
for Code
Improvement

Passes
Tests

No

End

Write Tests for
Desired Behavior

Code Generation/ Repair
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Simulator /
Result

Code
Agent

Code
Human Specified

Goal

Execution
Error Trace

Code Agent sees

(1) Human Specified Goals,
(2) Execution error Trace
(3) Current Code

(1) Easy: Execution Error

Limitations of Agentic-LLM corrective feedback

Formulate Plan
for Code
Improvement

Passes
Tests

No

End

Write Tests for
Desired Behavior

Code Generation/ Repair
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Simulator /
Result

Code
Agent

Code

(2) Medium Stuck: No more explicit execution
errors, but cannot reach human specified goal

Human Specified
Goal

Execution
Error Trace

Code Agent sees

(1) Human Specified Goals,
(2) Execution error Trace
(3) Current Code

Limitations of Agentic-LLM corrective feedback

Formulate Plan
for Code
Improvement

Passes
Tests

No

End

Write Tests for
Desired Behavior

Code Generation/ Repair
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Code Agent sees

(1) Human Specified Goals,
(2) Current Code (no more execution Errors)
(3) Human Feedback of the simulator results

Simulator /
Result

Code
Agent

Code

Provides
Feedback

Written
Feedback
(Prompt)

Human Specified
Goal

Limitations of Agentic-LLM corrective feedback

Formulate Plan
for Code
Improvement

Passes
Tests

No

End

Write Tests for
Desired Behavior

Code Generation/ Repair
Implementing Plan

Yes

How about using “Self-Corrective Feedback”?

Code Agent sees

(1) Human Specified Goals,
(2) Current Code (no more execution Errors)
(3) Human Feedback of the simulator results

Simulator /
Result

Code
Agent

Code

(3) Hard Stuck: The code keeps getting updated, but the simulation
result is the same.. Irrecoverable Failure

Provides
Feedback

Written
Feedback
(Prompt)

Human Specified
Goal

Self-Correction can fail miserably

What the user sees:

What the User instructs:

 Rewrite the above function.
The problem with this code is
the car moves forward but
failed to make a sharp turn.

It should look ahead alot more,
and slow down alot more when
it detects a turn upcoming

Code LLM is trying Really hard. But the same exact error
keeps happening.

→ The Key Problem: The code generation model has no
idea about what it is doing in the actual environment.
The only feedback is from the human.

But the human has no idea what’s wrong with the code.
It’s a blind leading the blind situation.

“IF Car on

Track”

Human Guided

Attempt: Track

Contour

First Attempt:

Track_mask

If track_mask[car_position]==0:

 on_track=False

Wrong because of what the mask looks like.

Failure to understand or change strategy

Irrecoverable Failures that cannot be handled by “think step-by-step” or
Self-correction

Generated Logic / Code Correctly

Human Guidance Required

Irrecoverable Failure

“IF Car on

Track”

Human Guided

Attempt: Track

Contour

First Attempt:

Track_mask

If track_mask[car_position]==0:

 on_track=False

Wrong because of what the mask looks like.

Failure to understand or change strategy

Irrecoverable Failures that cannot be handled by “think step-by-step” or
Self-correction

pointPolygonTest

(car_position,

track_contour)

Generated Logic / Code Correctly

Human Guidance Required

Irrecoverable Failure

Car Position

(x,y)

RGB

Range
Detect Car

RGB Range

Detect Track

Boundaries

Drawing Image

Border

mask = cv2.inRange(image, lower_track_color, upper_track_color)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

“IF Car on

Track”

Human Guided

Attempt: Track

Contour

First Attempt:

Track_mask

If track_mask[car_position]==0:

 on_track=False

Wrong because of what the mask looks like.

Failure to understand or change strategy

Irrecoverable Failures that cannot be handled by “think step-by-step” or
Self-correction

pointPolygonTest

(car_position,

track_contour)

Generated Logic / Code Correctly

Human Guidance Required

Irrecoverable Failure

Car Position

(x,y)

RGB

Range
Detect Car

RGB Range

Detect Track

Boundaries

Drawing Image

Border

Advanced Tool use required

mask = cv2.inRange(image, lower_track_color, upper_track_color)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

edges = cv2.Canny(mask, threshold1=100, threshold2=200)

contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

Human Creativity/Advanced Reasoning required.

(1) Understanding that the "pointPolygonTest()" is

failing, is because boundary is not closed.

(2) Solution is to close the boundary by drawing an

image border during preprocessing.

Summary

1. Troubleshooting and Code Generation for Systems and Applications is >10X more complicated than
Academic Code generation benchmarks.

2. End-to-End generation is Impossible. Therefore, we need to study the human troubleshooting
workflow, to decompose the problem into Tasks that CodeAgent LM can focus on.

3. "Isolating Functional Blocks" and "Understanding Source Code Logic" has dependencies on
Understanding the Program's Design Principles, System Causal Graph and Domain Understanding.

4. Debugging and generating new code in physical control systems is extremely difficult. It’s not fix patterns that
you can rehash like in constructing certain types of games or UI.

5. "Formulating Plan for Code Improvement" can generally works well at a high (and not very useful level).

6. Logic errors can be due to wrong high level plan, wrong implementation logic, wrong
hyperparameters, or wrong input assumptions. Neither the code agent or Human has vision over what
is happening.

7. Code Generation with Agentic self-corrective Feedback, and human feedback has irrecoverable failure.

Overcoming the Limits of Agentic-LLM corrective feedback

Code Agent sees

(1) Human Specified Goals,
(2) Current Code (no more execution Errors)
(3) Human Feedback of the simulator results
(4) Reconstructed "Image" of the Situation

Simulator /
Result

Code
Agent

Code

(3) Hard Stuck: The code keeps getting updated, but the simulation
result is the same.. Irrecoverable Failure
SOLUTION: Introduce Corrective Feedback with External Help

Provides Feedback at a
“Goals”” Level

Written
Feedback
(Prompt)

Human Specified
Goal

Multimodal LM
/ Tool Use

Provides Feedback at a
“Implementation” Level

Step 3: Writing Tests for Desired Behavior

Assumption: We can keep decomposing until task complexity is low enough, such that the
Multimodal LM p(y|x) can handle it; potentially with prompt examples or zero-shot

Formulate Plan
for Code
Improvement

Passes
Tests

No

End

Write Tests for
Desired Behavior

Code Generation/ Repair
Implementing Plan

Yes

“Is the car on-track, off-
track, or spiraling? Answer
with only one of the three
options.”

Vision LM

{On-track,
close-to-edge,
Off-center-left,
Off-center-right,
Off-track,
Left-turn Upcoming
Right-turn Upcoming
Spiralling,}

Why not just use a Computer Vision Model?
In the factory, spatio-temporal data from logs, positional coordinates, allows us to reconstruct the “image” of what happened and the sequence of events.

Test Generator p(x, y) = p(x) * p(y|x)

Step 3: Writing Tests for Desired Behavior

X~Simulation p(x) Multimodal LM p(y|x)

Obtain Rewards for
RL Agent

Test-cases for Source
Code Logic

Knowledge
Distillation

Formulate Plan
for Code
Improvement

Passes
Tests

No

End

Write Tests for
Desired Behavior

Code Generation/ Repair
Implementing Plan

Yes

In theory, if we had a way to generate Test cases that cover the distribution
of inputs and correct labels, that means we have the ability to generate
synthetic data to do many things (RL rewards, training data, knowledge
distillation…)….. Sounds too good to be true.

Step 3: Writing Tests for Desired Behavior

Assumption: We can keep decomposing until task complexity is low enough, such that the
Multimodal LM p(y|x) can handle it; potentially with prompt examples or zero-shot

Problem: We also can’t keep decomposing Tasks: Inference Speed, LLM costs.

Vision LM

Small Models

Few-shot Performance
limitations, Latency too High

No data to Train

We need to address the latency
of large models in generating
synthetic Tests and Labels.

(especially if we do very granular
decomposition of tasks)

Formulate Plan
for Code
Improvement

Passes
Tests

No

End

Write Tests for
Desired Behavior

Code Generation/ Repair
Implementing Plan

Yes

Summary

1. Troubleshooting and Code Generation for Systems and Applications is >10X more complicated than
Academic Code generation benchmarks.

2. End-to-End generation is Impossible. Therefore, we need to study the human troubleshooting
workflow, to decompose the problem into Tasks that CodeAgent LM can focus on.

3. "Isolating Functional Blocks" and "Understanding Source Code Logic" has dependencies on
Understanding the Program's Design Principles, System Causal Graph and Domain Understanding.

4. Debugging and generating new code in physical control systems is extremely difficult. It’s not fix
patterns that you can rehash like in constructing certain types of games or UI.

5. "Formulating Plan for Code Improvement" can generally works well at a high (and not very useful level).

6. Logic errors can be due to wrong high level plan, wrong implementation logic, wrong
hyperparameters, or wrong input assumptions. Neither the code agent or Human has vision over what
is happening.

7. Code Generation with Agentic self-corrective Feedback, and human feedback has irrecoverable failure.

8. Vision LMs can Providing Feedback (Labels) on the correctness of small functions, but we need to
address the latency of Vision LMs for synthetic generation.

Addressing the latency of large models in generating synthetic data.

“Where does In-context Learning happen in Large Language Models”. Sia, Mueller, Duh., 2024 NeurIPS

In LLMs, there is a “Task Recognition Point”, where the Model no longer needs
to perform self-attention over the context (instructions and examples) to
perform the Task.

What if we had a way to Increase Inference Speed by >50%, without
Sacrificing Performance?

Addressing the latency of large models in generating synthetic data.

“Where does In-context Learning happen in Large Language Models”. Sia, Mueller, Duh., 2024 NeurIPS

In LLMs, there is a “Task Recognition Point”, where the Model no longer needs to perform self-attention over
the context (instructions and examples) to perform the Task.

Addressing the latency of large models in generating synthetic data.

“Where does In-context Learning happen in Large Language Models”. Sia, Mueller, Duh., 2024 NeurIPS

Implication For Code Generation

Curve
Detector

Knowledge Distillation Code: from
curveDetector import

detect_curve()

Reward function in RL,
(Train for e.g., with PPO)

Code: Write
Logic for curve

detection

CodeLM

“IF detect_curve():”
Option1: CodeLM generates the code for the function, using
Multimodal LM as reward

Multimod
al LLM

Simulation

Option2: Lightweight model is distilled from Multimodal LM
which we import as a blackbox function.

Labels

Decomposed Tasks for
Over-kill Expensive Model

{On-track,
close-to-edge,
Off-center-left,
Off-center-right,
Off-track,
Left-turn Upcoming
Right-turn Upcoming
Spiralling,}

Summary

1. Troubleshooting and Code Generation for Systems and Applications is >10X more complicated than
Academic Code generation benchmarks.

2. End-to-End generation is Impossible. Therefore, we need to study the human troubleshooting
workflow, to decompose the problem into Tasks that CodeAgent LM can focus on.

3. "Isolating Functional Blocks" and "Understanding Source Code Logic" has dependencies on
Understanding the Program's Design Principles, System Causal Graph and Domain Understanding.

4. Debugging and generating new code in physical control systems is extremely difficult. It’s not fix patterns that
you can rehash like in constructing certain types of games or UI.

5. "Formulating Plan for Code Improvement" can generally works well at a high (and not very useful level).

6. Logic errors can be due to wrong high level plan, wrong implementation logic, wrong
hyperparameters, or wrong input assumptions. Neither the code agent or Human has vision over what
is happening.

7. Code Generation with Agentic self-corrective Feedback, and human feedback has irrecoverable failure.

8. Vision LMs can Providing Feedback (Labels) on the correctness of small functions, but we need to
address the latency of Vision LMs for synthetic generation.

9. Vision LMs can potentially be used as a reward generator in RL for Code Generators, or distilled into
small models which perform the desired functionality (instead of code).

Tests Generation: Logic Robustness Check

Formulate Plan
for Code
Improvement

Passes
Tests

No

End

Yes

Write Tests for
Desired Behavior

Code Generation/ Repair
Implementing Plan

Problem: Code Generated is not Consistent with the Plans

“Intuitively, we would like the provided interpretation to reflect

the true reasoning process of the model when making a

decision.

-- Jacovi & Goldberg (2020) Towards Faithfully Interpretable NLP Systems: How Should We

Define and Evaluate Faithfulness? ACL

How to Generate Tests to Check expected Behavior based on Plans?

Tests Generation: Logic Robustness Check

Code LLM
(BlackBox)

Inputs
Generated
Code

Reasoning
LM

Accelerate because it is on a
straight track with no turns

!

Explainer has its own strong prior as a
LM and biases from its own training
data.

How can we tell if the Code is Faithful
to the Plans and Reasooning?

Reason

Logical satisfiability of Counterfactuals for Faithful Explanations. Sia Et al., AAAI 2023

Tests Generation: Logic Robustness Check

Code LLM
(BlackBox)

Inputs
Generated
Code

Reasoning
LM

Accelerate because it is on a
straight track with no turns

Explainer has its own strong prior as a
LM and biases from its own training
data.

How can we tell if the Code is Faithful
to the Plans and Reasoning?

Reason

CounterFactual
Input and Output

Generator
Inputs

Counterfactual Inputs

Counterfactual Output

Logical satisfiability of Counterfactuals for Faithful Explanations. Sia Et al., AAAI 2023

(No Acceleration)

Input: Track with turns

!

Tests Generation: Logic Robustness Check

Code LLM
(BlackBox)

Inputs
Generated
Code

Reasoning
LM

Accelerate because it is on a
straight track with no turns

Explainer has its own strong prior as a
LM and biases from its own training
data.

How can we tell if the Code is Faithful
to the Plans and Reasoning?

Reason

CounterFactual
Input and Output

Generator

Counterfactual Input
(Tests Cases)

Inputs

Counterfactual Inputs

Counterfactual Output

Consistency
Check

Logical satisfiability of Counterfactuals for Faithful Explanations. Sia Et al., AAAI 2023

Generated
Code

(No Acceleration)

(No Acceleration)

Input: Track with turns

!

Summary

1. Troubleshooting and Code Generation for Systems and Applications is >10X more complicated than Academic Code
generation benchmarks.

2. End-to-End generation is Impossible. Therefore, we need to study the human troubleshooting workflow, to
decompose the problem into Tasks that CodeAgent LM can focus on.

3. "Isolating Functional Blocks" and "Understanding Source Code Logic" has dependencies on Understanding the
Program's Design Principles, System Causal Graph and Domain Understanding.

4. Debugging and generating new code in physical control systems is extremely difficult. It’s not fix patterns that you can rehash like in
constructing certain types of games or UI.

5. "Formulating Plan for Code Improvement" can generally works well at a high (and not very useful level).

6. Logic errors can be due to wrong high level plan, wrong implementation logic, wrong hyperparameters, or wrong
input assumptions. Neither the code agent or Human has vision over what is happening.

7. Code Generation with Agentic self-corrective Feedback, and human feedback has irrecoverable failure.

8. Vision LMs can Providing Feedback (Labels) on the correctness of small functions, but we need to address the latency
of Vision LMs for synthetic generation.

9. Vision LMs can potentially be used as a reward generator in RL for Code Generators, or distilled into small models
which perform the desired functionality (instead of code).

10. Counterfactual Tests should be generated which check whether the code is faithful to the High level plan approved by
the human.

“So can I use LLMs for Code Generation in my Organisation"

Code Generation (actually Code Repair) is Problem-solving in
Software Systems. Whether the effort is successful depends on

1. Constraints that the Code needs to operate in.

2. Expectations of the end-users.

3. Quality of the current source code.

4. Availability of well written documentation or APIs.

5. Ability of Programmers themselves to steer the LLM based on strong
technical knowledge.

6. Mature tech organization with controls over code quality of LLM generated
code to be checked in.

	Slide 1: Limitations of LLM Software Agents for Source code in Physical Planning and Control systems
	Slide 2
	Slide 3: Summary
	Slide 4: Rule-based Planning and Control Systems
	Slide 5: Troubleshooting and Generation benchmarks vs ACTUAL production code
	Slide 6: Code Benchmarks Vs Software Issues in the Factory
	Slide 7: Summary
	Slide 8: Troubleshooting and Code Generation workflow without LLMs
	Slide 9: Troubleshooting and Code Generation workflow with LLMs
	Slide 10: Code RAG
	Slide 11: Summary
	Slide 12
	Slide 13: Formulating Plan for Code Improvement
	Slide 14: Summary
	Slide 15: Formulating Plan for Code Improvement
	Slide 16: Formulating Plan for Code Improvement
	Slide 17: Formulating Plan for Code Improvement
	Slide 18: Step 2: Agent Generates Code for the Plan: Code Logic Errors
	Slide 19: Step 2: Agent Generates Code for the Plan: Code Logic Errors
	Slide 20: Step 2: Agent Generates Code for the Plan: Code Logic Errors
	Slide 21: Step 2: Agent Generates Code for the Plan: Code Logic Errors
	Slide 22: Step 2: Agent Generates Code for the Plan: Code Logic Errors
	Slide 23: Step 2: Agent Generates Code for the Plan: Code Logic Errors
	Slide 24: Summary
	Slide 25: Step 2: Agent Generates Code for the Plan
	Slide 26: Limitations of Agentic-LLM corrective feedback
	Slide 27: Limitations of Agentic-LLM corrective feedback
	Slide 28: Limitations of Agentic-LLM corrective feedback
	Slide 29: Limitations of Agentic-LLM corrective feedback
	Slide 30: Limitations of Agentic-LLM corrective feedback
	Slide 31: Limitations of Agentic-LLM corrective feedback
	Slide 32: Self-Correction can fail miserably
	Slide 33: Irrecoverable Failures that cannot be handled by “think step-by-step” or Self-correction
	Slide 34: Irrecoverable Failures that cannot be handled by “think step-by-step” or Self-correction
	Slide 35: Irrecoverable Failures that cannot be handled by “think step-by-step” or Self-correction
	Slide 36: Summary
	Slide 37: Overcoming the Limits of Agentic-LLM corrective feedback
	Slide 38: Step 3: Writing Tests for Desired Behavior
	Slide 39: Step 3: Writing Tests for Desired Behavior
	Slide 40: Step 3: Writing Tests for Desired Behavior
	Slide 41: Summary
	Slide 42: Addressing the latency of large models in generating synthetic data.
	Slide 43: Addressing the latency of large models in generating synthetic data.
	Slide 44: Addressing the latency of large models in generating synthetic data.
	Slide 45: Implication For Code Generation
	Slide 46: Summary
	Slide 47: Tests Generation: Logic Robustness Check
	Slide 48: Tests Generation: Logic Robustness Check
	Slide 49: Tests Generation: Logic Robustness Check
	Slide 50: Tests Generation: Logic Robustness Check
	Slide 51: Summary
	Slide 52: “So can I use LLMs for Code Generation in my Organisation"

